by Astrogator John | Oct 5, 2013 | General Comments
This figure, created a few days ago, shows the Earth- and Moon-centered orbit estimates. It also shows the uncertainty in these estimates. The uncertainty is very small, although it’s hard to see the scale in this picture since we zoomed in to show it. The uncertainty is shown as a 3 dimensional region in space that represents where LADEE is most likely to be. The region in the picture is only a few hundred meters long, using the estimate from several days ago (it’s smaller now).
As we mentioned previously, we’re not quite within the Moon’s sphere of influence yet. (LADEE will be within most definitions of the Moon’s sphere of influence by 19:30 UTC today, October 5th.) Even so, we’ve been modeling the significant effects of the Moon’s gravity on our trajectory since we launched. The way we modeled it, as is standard, was as if the Moon is a perfect sphere. In reality, however, we know from all the previous lunar missions that the Moon’s gravity field is quite “lumpy” and when we are in orbit around the Moon, we will model the Moon’s gravity with many more equations than we did when LADEE was close to Earth. As we approach the Moon, we have to transition from considering the Earth’s gravity as dominant to the Moon’s gravity as the primary effect. For trajectory design purposes we’ve been switching from an Earth-centered orbit propagation to a Moon-centered orbit propagation when LADEE gets within 50,000 km of the Moon’s center. (Our analysis has shown that this number doesn’t have to be very precise to meet the accuracy requirements. On the Clementine lunar mission we didn’t switch to a Moon-centered orbit propagation until we captured at Lunar Orbit Insertion.)
In addition to calculating the trajectories, we also have to track LADEE and estimate the orbit, using a technique called “Orbit Determination.” Fellow Astrogators Lisa Policastri, Ryan Lebois, and Craig Nickel work with us on this. The method we use is an Extended Kalman Filter, which processes tracking data sequentially as we receive the data from the tracking stations around the world. Orbit Determination is sort of like curve fitting, and one of our jobs is to estimate the trajectory that best fits the tracking data. As you can see from the pictures we’ve posted previously, LADEE’s trajectory bends a lot as it goes from the Earth’s influence to the Moon’s. To model the changing gravity for Orbit Determination, we decided to do something different than we do for trajectory design. Instead of switching from Earth-Centered to Moon-centered at a specified point, a few days ago we started running two algorithms side-by-side; one Earth-centered, and one Moon-centered. We trend the two different orbit estimates, and by the time we reach the LOI1 maneuver (6 Oct 2013 10:57 UTC), which is just past periselene, we will be ready to transition to using the Moon-centered algorithm for the rest of the mission.
by Astrogator Mike | Oct 5, 2013 | General Comments
LADEE continues to approach the Moon, now nearing 100,000 km in altitude.
Note the last few parameters on the left. Lunar orbit period is zero (hyperbolic still), as is the Lunar Altitude of Apoapsis. The Lunar Altitude of periapsis isn’t accurate either, as the spacecraft is still mostly in Earth orbit. The Lunar disk is getting larger, and the Earth disk smaller:
This shot shows the upcoming portion of the trajectory, when the Earth-bound trajectory is taken over by Lunar gravity:
The final shot is the best, our Lunar approach:
by Astrogator Mike | Oct 4, 2013 | General Comments
LADEE is rapidly approaching the Moon. Depending on who you talk to, you can consider the spacecraft to be within the “Sphere of Influence” of the Moon somewhere near 66,000 km (on LADEE we switch central bodies on our numerical integrators at 50,000 km, but that’s not a magic number). So we’re not quite Moon-Centered yet, but that doesn’t stop us from giving you pictures in a Moon centered frame.
As you can see, showing the Earth orbit no longer has great utility:
[Note: Velocity is still Earth-relative] I have to still show my favorite view of the phasing loops, the Earth-Moon rotating coordinate frame, but Earth-bound phasing loops are about to be less relevant.
But as much as I like the phasing loops, this is the view we really should be thinking about (and I like it so much I just tweeted it!):
And this view gets me very excited:
But we still can look back to where we came from:
If you check the dates on the pictures, you can see what order I created them in, as the dates don’t all match and I’m animating in real time.
by Astrogator John | Oct 2, 2013 | General Comments
Today in the Flight Dynamics Room at Ames, fellow Astrogator Craig Nickel called out when LADEE became closer to the Moon than to the Earth – at 10:07 PDT tonight – and it’s not coming back!
by Astrogator Mike | Oct 1, 2013 | General Comments
LADEE on 10-1-2013 16:56 UTC (Earth-Centered Inertial View)
LADEE on 10-1-2013 16:56 UTC (Rotating Coordinate Frame)
LADEE on 10-1-2013 16:56 UTC (Top View)
LADEE passed perigee this morning near 4 AM PDT and is now headed for the Moon. Currently the spacecraft is above GEO, with the TCM-1 maneuver coming at 3 PM PDT today (1 Oct. 2013)
by Astrogator Mike | Oct 1, 2013 | General Comments
LADEE on 10-1-2013 07:13 UTC (Rotating Coordinate Frame)
LADEE on 10-1-2013 07:13 UTC (Earth Inertial Coordinate Frame)
LADEE on 10-1-2013 07:13 UTC (Top View)
LADEE now under the GEO belt, and heading for its last perigee.